

 Adriel García Hernández

Coreference resolution for the English
language

DISSERTAÇÃO DE MESTRADO

DEPARTAMENTO DE INFORMÁTICA
Programa de Pós-Graduação em Informática

Rio de Janeiro

April 2017

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Adriel García Hernández

Coreference resolution for the English language

DISSERTAÇÃO DE MESTRADO

Dissertation presented to the Programa de Pós-Graduação em
Informática of the Departamento de Informática, PUC-Rio as
partial fulfillment of the requirements for the degree of Mestre
em Informática

Advisor: Prof. Ruy Luiz Milidiú

Rio de Janeiro

April 2017

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Adriel García Hernández

Coreference resolution for the English language

Dissertation presented to the Programa de Pós-Graduação em
Informática, of PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática. Approved by the
Undersigned Examination Committee.

Prof. Ruy Luiz Milidiú
Advisor

Departamento de Informática – PUC-Rio

Prof. Marcus Vinicius Soledade Poggi de Aragão
 Departamento de Informática – PUC-Rio

Prof. Leandro Guimarães Marques Alvim
UFRRJ

Prof. Márcio da Silveira Carvalho
Vice Dean of Graduate Studies

Centro Técnico Científico – PUC-Rio

Rio de Janeiro, April 26th, 2017

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

All rights reserved.

Adriel García Hernández

Graduated from University of Havana, Cuba in Computer
Science. His research is focused in Machine Learning and
Natural Language Processing.

Bibliographic data
García Hernández, Adriel

Coreference resolution for the English language /
Adriel García Hernández; advisor: Ruy Luiz Milidiú. —
Rio de Janeiro: PUC - Rio, Departamento de Informática,
2017.

62 f. : il. (color.); 29.7 cm

Dissertação (mestrado) - Pontifícia Universidade Ca-
tólica do Rio de Janeiro, Rio de Janeiro, Departamento
de Informática, 2017.

Inclui bibliografia.

1. Informática – Teses. 2. aprendizado de máquina.
3. processamento de linguagem natural. 4. resolução
de correfenência. 5. modelo linear esparso. 6. indução
de atributos.
I. Milidiú, Ruy Luiz. II. Pontifícia Universidade Católica do
Rio de Janeiro. Departamento de Informática. III. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Acknowledgements

To CNPq and CAPES and FAPERJ, for the financial support.

Thanks to PUC-Rio, for the support.

Thanks to my advisor PhD Ruy Luiz Milidiú for his support and contri-
bution of knowledge.

Thanks to my family because without them it would not have been pos-
sible to reach this moment.

Thanks to my wife for supporting me and encouraging me to finish this
project.

Thanks to all my friends who became part of my family.

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Abstract

García Hernández, Adriel; Milidiú, Ruy Luiz (Advisor).
Coreference resolution for the English language. Rio
de Janeiro, 2017. 62p. Dissertação de Mestrado - Departamento de
Informática, Pontifícia Universidade Católica do Rio de Janeiro.

One of the problems found in natural language processing systems, is
the difficulty to identify textual elements referring to the same entity, this
task is called coreference. Solving this problem is an integral part of dis-
course comprehension since it allows language users to connect the pieces
of speech information concerning to the same entity. Consequently, coref-
erence resolution is a key task in natural language processing. Despite the
large efforts of existing research, the current performance of coreference
resolution systems has not reached a satisfactory level yet. In this work,
we describe a structure learning system for unrestricted coreference reso-
lution that explores two techniques: latent coreference trees and automatic
entropy-guided feature induction. The latent tree modeling makes the learn-
ing problem computationally feasible, since it incorporates a relevant hidden
structure. Additionally, using an automatic feature induction method, we
can efciently build enhanced non-linear models using linear model learning
algorithms, namely, the structured and sparse perceptron algorithm. We
evaluate the system on the CoNLL-2012 Shared Task closed track data set,
for the English portion. The proposed system obtains a 62.24% value on
the competition’s official score. This result is below the 65.73%, the state-
of-the-art performance for this task. Nevertheless, our solution significantly
reduces the time to obtain the clusters of a document, since, our system
takes 0.35 seconds per document in the testing set, while in the state-of-
the-art, it takes 5 seconds for each one.

Keywords
machine learning; natural language processing; coreference resolution;

sparse linear model; feature induction; supervised machine learning.

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Resumo

García Hernández, Adriel; Milidiú, Ruy Luiz. Resolução de co-
referência para a língua inglesa. Rio de Janeiro, 2017. 62p.
Dissertação de Mestrado - Departamento de Informática, Pontifí-
cia Universidade Católica do Rio de Janeiro.

Um dos problemas encontrados nos sistemas de processamento de lin-
guagem natural é a dificuldade em identificar elementos textuais que se refe-
rem à mesma entidade. Este fenômeno é chamado de correferência. Resolver
esse problema é parte integrante da compreensão do discurso, permitindo
que os usuários da linguagem conectem as partes da informação de fala rela-
tivas à mesma entidade. Por conseguinte, a resolução de correferência é um
importante foco de atenção no processamento da linguagem natural. Ape-
sar da riqueza das pesquisas existentes, o desempenho atual dos sistemas de
resolução de correferência ainda não atingiu um nível satisfatório. Neste tra-
balho, descrevemos um sistema de aprendizado estruturado para resolução
de correferência sem restrições que explora duas técnicas: árvores de cor-
referência latente e indução automática de atributos guiadas por entropia.
A modelagem de árvore latente torna o problema de aprendizagem compu-
tacionalmente viável porque incorpora uma estrutura escondida relevante.
Além disso, utilizando um método automático de indução de recursos, po-
demos construir eficientemente modelos não-lineares, usando algoritmos de
aprendizado de modelo linear como, por exemplo, o algoritmo de percep-
tron estruturado e esparso. Nós avaliamos o sistema para textos em inglês,
utilizando o conjunto de dados da CoNLL-2012 Shared Task. Para a lín-
gua inglesa, nosso sistema obteve um valor de 62.24% no score oficial dessa
competição. Este resultado está abaixo do desempenho no estado da arte
para esta tarefa que é de 65.73%. No entanto, nossa solução reduz signifi-
cativamente o tempo de obtenção dos clusters dos documentos, pois, nosso
sistema leva 0.35 segundos por documento no conjunto de testes, enquanto
no estado da arte, leva 5 segundos para cada um.

Palavras–chave
aprendizado de máquina; processamento de linguagem natural; resolu-

ção de correfenência; modelo linear esparso; indução de atributos; aprendi-
zado de máquina supervisionado

.

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Table of contents

1 Introduction 10
1.1 Coreference Resolution 11
1.2 Motivations and Goals 13
1.3 Contributions 14
1.4 Dissertation Organization 15

2 Related Works 16
2.1 Mention Detection 16
2.2 Mention-Pair Classification 16
2.3 Entity-Mention 17
2.4 Correlation Clustering 18
2.5 Coreference Tree 19
2.6 Deep Learning 19
2.7 Other systems 19
2.8 Chapter Conclusions 20

3 Coreference Resolution 21
3.1 Mention Detection 22
3.2 Candidate Pairs Graph Generation 23
3.3 Basic Feature Setting 25
3.4 Context Feature Induction 28
3.5 Coreference Tree Learning 31
3.6 Chapter Conclusions 38

4 Empirical Evaluation 39
4.1 CoNLL-2012 Data set 39
4.2 Evaluation Metrics 40
4.3 State-of-the-Art Systems 41
4.4 Mention Detection 42
4.5 Candidate Pair Generation 43
4.6 Coreference Resolution 44
4.7 Error Analysis 51
4.8 Chapter Conclusions 53

5 Conclusion 54

6 Bibliography 56

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

List of figures

1.1 Unrestricted coreference resolution subtasks. 12

3.1 Train Sequence Diagram. 21
3.2 Candidate Pairs Graph. 24
3.3 Document Tree. 25
3.4 Candidate pair features representation. 26
3.5 Decision Tree for Table 3.5. 30
3.6 Features templates. 30
3.7 Greedy algorithm for maximum branching problem. 32
3.8 Structure Perceptron algorithm. 33
3.9 Latent Structure Perceptron algorithm. 34
3.10 Latent and Structure Perceptron algorithm with margin and

root loss. 35
3.11 Latent, Structure and Sparse Perceptron algorithm with mar-

gin and root loss. 36
3.12 Latent, Structure and Sparse Perceptron algorithm with mar-

gin, root loss and dropout. 37
3.13 Average, Latent, Structure and Sparse Perceptron algorithm

with margin, root loss and dropout. 38

4.1 Impact of margin and loss value on performance. 45
4.2 Impact of average on performance. 46
4.3 Impact of dropout and threshold on training performance. 50
4.4 Impact of dropout and threshold on development performance. 50

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

List of tables

3.1 Lexical Basics Features 27
3.2 Syntactic Basics Features 27
3.3 Semantic Basics Features 28
3.4 Positional Basics Features 28
3.5 Data set for the example in Figure 1.1 29

4.1 State-of-the-art systems. 41
4.2 State-of-the-art systems details. 42
4.3 Mention detection performances before clustering. 42
4.4 Mention detection performances on development set after

clustering. 43
4.5 Performances of sieves on the development set. 44
4.6 Appearances of the features in the templates. 48
4.7 Impact of EFI in development performance. 49
4.8 Impact of threshold and dropout in the model length and

development performance. 49
4.9 Candidate pairs generation errors. 51
4.10 Most frequent errors whenever an incorrect parent i for a

mention j is predicted instead of the correct parent î. 52
4.11 Most frequent singleton errors. 52

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

1
Introduction

When a person sees or hears a sentence, she makes full use of her
experience and intelligence to understand it. This knowledge includes not
only grammar, but also her knowledge of words, the context of the sentence,
and most important, her understanding of the subject matter. To model this
language understanding process in a computer, we need a program which
combines grammar, semantics, and reasoning in an intimate way, concentrating
on their interaction. The field of study that focuses on the interactions between
human language and computers is called Natural Language Processing, or NLP
for short.

A distinctive characteristic of this field is that, for each task, it usually
exists a competition that establishes a well-defined problem setting, standard
corpora, and evaluation metrics. The Conference on Natural Language Learn-
ing (CoNLL) Shared Tasks are examples of such competitions. Furthermore,
they promote a significant number of advances in this research area.

Typically the NLP algorithms are based on machine learning (ML)
algorithms. Instead of hand-coding large sets of rules, they can rely on ML
to automatically learn these standards by analyzing a set of examples (i.e. a
large corpus, like a book, down to a collection of sentences), and making a
statical inference. In general, the more data analyzed, the more accurate the
model will be.

Natural Language Processing includes structure learning (SL) problems,
such as dependency parsing, part-of-speech (POS) tagging and quotation ex-
traction. Dependency parsing is to identify a tree underlying a given sentence.
In POS tagging, for a given input sentence, the prediction output is a se-
quence of tags. In quotation extraction, an input document is segmented into
non-overlapping quotes that, additionally, are associated with their authors.

In this work, we are interested in another SL problem, the so called
Coreference Resolution (CR), which consists in clustering mentions that are
references to the same entity in a document. In this case, the output domain
covers all possible clusters that can be formed by the entities, and hence,
can be modeled as a structured prediction problem. For this effort, following
a line of research in the Laboratorio de Engenharia de Algoritmos e Redes
Neurais (LEARN) we base our investigation on the previous work Fernandes
et al. (2014). Our emphasis in this document is on reporting our new modeling

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Introduction 11

strategies and the resulting new system for Coreference Resolution for the
English language.

1.1
Coreference Resolution

Mentions are textual references to real-world entities or events. In a
given document, mentions that refer to the same entity are called coreferring
mentions and form a mention cluster. Coreference resolution is the task of
identifying the mention clusters in a document and has been a core research
topic in natural language processing. It has wide applications in question
answering, machine translation, automatic summarization, and information
extraction. Fernandes et al. (2014).

This problem has been carefully studied during the last decades. The
first to evaluate it was Grishman and Sundheim (1996). Subsequently in the
competition SemEval-2010 the goal was to assess and compare automatic
coreference resolution systems for six different languages (Catalan, Dutch,
English, German, Italian, and Spanish) in four evaluation settings and using
four different metrics Recasens et al. (2010). Later the CoNLL-2011 Shared
Task Pradhan et al. (2011) has been dedicated to the modeling of unrestricted
coreference resolution for English text. The CoNLL-2012 Shared Task Pradhan
et al. (2012) considering three languages: Arabic, Chinese, and English.

In the present work, we solve the problem proposed in Pradhan et
al. (2012), but only for the English language. The unrestricted coreference
resolution task consists of identifying the non-singleton mention clusters in a
document. A singleton mention cluster is that which contains only one mention.

Our specific task here is to identify for each document its non-singleton
mention clusters.

To solve this task, we divide it into three subtasks:

1. Mention detection - where the document mentions are predicted using a
set of rules;

2. Mention clustering - where mentions clusters are predicted using a
machine learning strategy;

3. Singleton elimination - where the clusters formed by a single mention
are eliminated.

In Figure 1.1, we present an illustrative example annotated in the dataset
used in Pradhan et al. (2012). First, eight mentions are detected and shown in
bold. Next, we identified four mention clusters by tagging each mention with

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Introduction 12

different letters to indicate its cluster. Finally, clusters that contain only one
mention are ignored, such as the one with "the Chinese people" as its unique
mention.

Figure 1.1: Unrestricted coreference resolution subtasks.

In this work, we follow the solution from Fernandes et al. (2014), which
proposes an approach to unrestricted coreference resolution based on two
essential modeling techniques: latent coreference trees and entropy-guided
feature induction. Our approach relies on a graph whose nodes are the mentions
in the given document. The arcs of this graph link mention pairs that are
coreferent candidates.

The stages in which we can summarize the training, are the following:

1. Mention detection - where we build a graph node for each mention
by adapting a predictor proposed by Santos and Carvalho (2011), and
adding new rules;

2. Candidate Pair Generation - where we add a directed arc for each
candidate coreferent mention pair by adapting the sieves proposed by
Lee et al. (2013), and adding one filter;

3. Basic Feature Setting - where we set basic features that indicate whether
an arc is likely to be connecting a coreferent pair by adapting the features
used by Santos and Carvalho (2011);

4. Feature Induction - where we conjoin basic features to generate complex
ones with high discriminating power by means of the entropy-guided
feature induction method proposed by Fernandes (2012) and Milidiú et
al. (2008);

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Introduction 13

5. Coreference Tree Learning - where we learn how to extract the trees that
connect coreferent mentions in the graph, by applying a large margin,
latent and sparse perceptron structure learning algorithm.

Predictor testing uses the same first three steps as in predictor training,
followed by three further steps:

5. Context Feature Setting - where we set the values of the additional
induced features selected at training;

6. Coreference Tree Prediction - where we apply a greedy algorithm to solve
an optimal branching problem to find the maximum score coreference
trees;

7. Coreference Cluster Extraction - where we extract the clusters of core-
ferring mentions from the coreference trees.

To evaluate our system we use the CoNLL-2012 Shared Task evaluation
scheme, adopting the unweighted average of the MUC Vilain et al. (1995), B3

Bagga and Baldwin (1998), and CEAFe Luo (2005) metrics.

1.2
Motivations and Goals

Coreference is a pervasive phenomenon in natural language. The prob-
lem lies at the intersection of syntax, semantics, and discourse. Coreference
resolution is essential for natural language understanding and is necessary for
many NLP applications, such as information extraction, question answering,
and summarization. For this reason, we set ourselves the task of implementing
a solution to this problem and achieving results close to state of the art.

To continue with the research line of our LEARN group, we selected
the Fernandes et al. (2014) work, to carry out this implementation. Also, we
noticed the possibility of making some variations to the perceptron algorithm
to reduce the number of attributes to use during the prediction.

Main Goal

To implement a coreference resolution system, based on Fernandes et
al. (2014), with generalization power similar to the state-of-the-art
analyzers, that uses a reduced amount of attributes.

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Introduction 14

Specific Goals

To accomplish the main goal proposed above, we state the following
subgoals:

1. to implement a predictor that extracts the mentions of the document,
based on Santos and Carvalho (2011), and making some specifications
for the English language;

2. to implement a predictor that determines the mention clusters, based on
Fernandes et al. (2014);

3. to perform the induction procedure, using the Entropy-Guided Feature
Generation algorithm Fernandes (2012); Milidiú et al. (2008); Santos and
Milidiú (2009);

4. to perform the selection of the most informative features, using the
Structured Sparse Perceptron Goldberg and Elhadad (2011);

5. to empirically evaluate and compare the proposed solution with state-
of-the-art systems, using the English data set and the evaluation metric
provided by the CoNLL Shared Task 2012 Pradhan et al. (2012).

1.3
Contributions

The main contributions of this dissertation are:

– the reduction of the number of attributes of the proposed model in
Fernandes et al. (2014) in 92.54%;

– the decrease in 93% of the time to get the clusters of a document,
compared to the time required by the state-of-the-art Clark and Manning
(2016);

– the implementation of a predictor of mentions that improves the results
achieved in Fernandes et al. (2014);

– the creation of a new technique of average for the structured perceptron;

– the simplification of the algorithm to solve an optimal branching problem
to find the maximum score coreference trees;

– the implementation of the Entropy-Guided Structured Learning Frame-
work proposed by Fernandes (2012) with Structured Sparse Perceptron
and dropout technique;

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Introduction 15

– a system with competitive performance when compared against the state-
of-the-art that attains 62.24% of accuracy when using the CoNLL Share
Task 2012 metric Pradhan et al. (2012).

1.4
Dissertation Organization

The remainder of this document is organized as follows; In chapter 2, we
review the background and related work on the coreference resolution task.
In chapter 3, we describe our proposed learning system. Next, in chapter 4,
we present the empirical evaluation of our approach. Finally, in chapter 5, we
draw our conclusions and comment on interesting future work.

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

2
Related Works

Over the last two decades, many different machine learning–based ap-
proaches to coreference resolution have been proposed. Most of them use su-
pervised learning and divide the task into two phases: the detection of potential
mentions and the linking of mentions to form coreference clusters, that is, men-
tion clustering Fernandes et al. (2014). Below we will present the techniques
most used to address this problem.

2.1
Mention Detection

Most of the works that perform mention detection use a set of heuristics.
The common approach consists of extracting all noun phrases (NP) from the
parse tree and considering them to be candidate mentions Soon et al. (2001);
Santos and Carvalho (2011); Haghighi and Klein (2010); Stoyanov et al. (2010);
Chang et al. (2011); Lee et al. (2013); Bansal and Klein (2012); Sapena et al.
(2013). A few works approach the mention detection task by training classifiers
Bengtson and Roth (2008); Yuan et al. (2012).

2.2
Mention-Pair Classification

McCarthy and Lehnert (1995) were among the first to adopt a machine
learning approach to resolving coreference. They evaluated a decision-tree-
based system on the MUC-5 English Joint Venture corpus. The system was
trained on all possible pairs in the training set, with eight features. The
result outperformed an earlier heuristics-based system. Numerous systems were
subsequently developed, and generally followed this paradigm.

One of the limitations acknowledged by the authors regarding their study
is that the imbalance of the positive and negative training instances causes a
bias towards classifying more negative pairs. Because all possible pairings of
mentions are extracted, the negative instances far outnumbered the positive
ones. An influential method to creating training instances to mitigate this
problem was proposed in Soon et al. (2001). Positive instances were created
from a mention and its immediate preceding mention that are coreferent. For
every positive instance that involves mentions mi and mj, negative instances
were created for each pair of mentions mk and mj, where i < k < j. A variant

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Related Works 17

of this method that differs slightly in the creation of positive instances was
proposed in Ng and Cardie (2002), whereby the immediate preceding non-
pronominal mentions is paired with a non-pronominal mention to create a
positive instance. Another variant in the creation of negative instances was
described in Ng and Cardie (2002). For every anaphoric mention mj whose
farthest antecedent mention to the left is mi, a negative instance was created
for each mention mk such that i < k < j and mk and mj are not coreferent.

Other methods in reducing the training instances focused on removing
obvious negative instances to improve the training set balance or removing
elusive positive instances to help the algorithm learn from “confident” pairs.
Yang et al. (2003) removed mentions that violate gender, number or person
agreement with the anaphor. Harabagiu et al. (2001) crafted rules manually to
remove hard positive instances (such as those that require external knowledge)
while preserving the coverage of clusters (based on the transitivity nature of
the coreference relation) as much as possible. Ng and Cardie (2002) used a
learner to exclude hard positive instances. Uryupina (2004) employed different
methods in eliminating irrelevant or hard positive instances for pronoun,
proper name, definite NP, and other types of anaphoric mentions. The number
of features obtained from the training instances varies considerably, from a
small set of eight McCarthy and Lehnert (1995) to nearly 40 Ng and Cardie
(2002). Uryupina (2004) even reported 187 features. The features can either
operate on one of the two mentions or both of them. Most of these features
fall into one of the categories of lexical, syntactic, or semantic.

Lexical features mainly include string matching operations, such as exact
match, substring match, and overlapping words. Syntactic features consist of
grammatical roles, phrasal types, linguistic constraints like agreement and
binding theory. Most of these syntactic features are derived from the parse
trees in a heuristic manner. Semantic features usually involve consulting an
external ontology, for example Miller (1995). Ng (2007) experimented with
sophisticated semantic features but found limited performance gains, due to
the difficulty in accurately computing these features. Bengtson and Roth (2008)
evaluated the contributions of the features commonly used.

2.3
Entity-Mention

A common critique of the mention-pair model is that it cannot capture
information beyond the mention pair. Consider a pair of a non-pronominal
antecedent and a pronominal anaphor. The information that can be obtained
from the two mentions to determine their coreferential status is very limited,

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Related Works 18

except for the gender and number agreements. Discarding these hard-to-
resolve instances as discussed earlier may help the algorithms to learn from
other strong evidence. However, this type of pair is a very frequent linguistic
phenomenon.

In light of this shortcoming of the mention-pair model, Yangy et al. (2004)
presented an approach to determining whether a noun phrase is coreferential
with an existing (partial) coreferential cluster. They obtained better results on
the GENIA data set Kim et al. (2003) than the mention-pair model using a
decision tree system.

Training instances in an entity-mention model encompasses an anaphor
and a cluster of preceding NPs. Instances are created similarly to the mention-
pair model, i.e., for each positive instance, negative instances are created with
the anaphora and its noncoreferential clusters.

In addition to features used in the mention-pair models describing the
relationships between the anaphor and its antecedent, features encoding rela-
tionships between an anaphor and a partial cluster are added. These cluster-
level features utilize first-order logic to expand upon the pairwise features.
For example, the number agreement feature (whether the two mentions are
both singular, or plural, or one is singular and the other plural) between the
antecedent and anaphor in the mention-pair model can be transformed to the
number agreement among the anaphor and all Yangy et al. (2004) or any Yang
et al. (2008); Luo et al. (2004) of the NPs in the cluster.

2.4
Correlation Clustering

Finley and Joachims (2005); McCallum and Wellner (2004) formulate
coreference resolution as a correlation clustering problem. However, they
used different learning algorithms to predict the resulting clusters. The first
formulated a supervised clustering method SVM cluster based on an SVM
framework for learning structured outputs. The algorithm accepts a series
of “training clusters,” a series of sets of items and clusterings over that
set. The method learns a similarity measure between item pairs to cluster
future sets of items in the same fashion as the training clusters, and the
second uses structured perceptron Collins (2002). Our system is also based
on the structured perceptron; however, we use a large margin extension of
this algorithm and use latent trees to represent each coreferring cluster. In
Yu and Joachims (2009) they presented a framework and formulation for
learning Structural SVMs with latent variables, applying this algorithm to
the coreference resolution problem and comparing with the results obtained in

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Related Works 19

Collins (2002), achieving a significant improvement.

2.5
Coreference Tree

Yu and Joachims (2009); Fernandes et al. (2014) model the problem
through coreference tree, although with different characteristics in trees.
The former represents a document by a graph that relates the mentions by
undirected arcs, whereby the clusters are shaped by undirected trees. Then
they run any Maximum Spanning Tree algorithm such as Kruskal’s algorithm
Kruskal (1956) in the complete graph of mentions and output the clustering
defined by the forest as the prediction. The latter represents a document using
a directed graph since it relates the mentions by directed arcs, also creates a
fictitious node that connects with all the mentions. Then they run a Chu-Liu-
Edmonds Chu and Liu (1965); Edmonds (1967) algorithm to find the maximum
score coreference tree, then each coreference tree son of the fictitious node,
corresponds to a cluster of coreferring mentions. In both cases, the weight of
each arc is the product of the vector of attributes of the arc and the vector of
weights. They learn the vector of weights using structural SVMs and structured
perceptron respectively.

2.6
Deep Learning

Recently Wiseman et al. (2015) introduced a simple, non-linear mention-
ranking model for coreference resolution that attempts to learn distinct fea-
ture representations for anaphoricity detection and antecedent ranking. Clark
and Manning (2016) improved the results of Wiseman et al. (2015) pre-
sented a coreference system that captures entity-level information with dis-
tributed representations of coreference cluster pairs. These learned, dense,
high-dimensional feature vectors provide his cluster-ranking coreference model
with a strong ability to distinguish beneficial cluster merges from harmful ones.
The model is trained with a learning-to-search algorithm that allows it to learn
how local decisions will affect the final coreference score.

2.7
Other systems

Other systems use global inference methods that combine classification
and clustering in one step. Cai and Strube (2010); Cai et al. (2011); Sapena
et al. (2013) present systems that implement global decision via hypergraph
partitioning. Whereas Cai and Strube (2010); Cai et al. (2011) use a spectral

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Related Works 20

clustering algorithm to perform hypergraph partitioning, Sapena et al. (2013)
use relaxation labeling for the resolution process. There are also approaches
that perform global inference using integer linear programming to enforce
consistency on the extracted coreference clusters Denis et al. (2007); Klenner
(2007); Finkel and Manning (2008).

2.8
Chapter Conclusions

Several techniques have been applied to solve the problem of coreference
resolution of a document. Here we reviewed the main topics referring to
coreference resolution, showing the most used approaches to tackle this issue.

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

3
Coreference Resolution

Coreference resolution is the task of finding all expressions that refer to
the same entity in a discourse Lee et al. (2013). To solve this problem, we follow
the work of Fernandes et al. (2014), where the authors propose an approach to
unrestricted coreference resolution that is based on two essential modeling
techniques: latent coreference trees and entropy-guided feature induction.
Its approach relies on a graph whose nodes are the mentions in the given
document. The arcs of this graph link mention pairs that are coreferent
candidates, and finally they use a structured and sparse perceptron to learn
how to determine the correct cluster tree.

In Figure 3.1, we show the whole process of training. Firstly, we detect
the mentions of each document, then create the candidate graphs, generating
arcs among the most likely mentions of being in the same cluster. Later we
generate many features for each arc. Finally, we use a structured and sparse
perceptron to produce a model with an efficiency close to state of the art.

Figure 3.1: Train Sequence Diagram.

In this chapter, we will describe in detail each of these processes involved
in solving our problems. First we give details of how the learning is performed
with coreference pairs graphs. Then, we specify the edge-based scoring function
that serves to discriminate candidates to coreference pairs graphs. Finally, we
describe the structure perceptron and the corresponding extensions that need
to be included in order to fulfill the proposed goals.

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Coreference Resolution 22

3.1
Mention Detection

Mentions detection is the first task to be solved in the problem of
coreference resolution. As many authors have affirmed, the mention detection
task is crucial to the performance of a coreference resolution system, because
the mentions that are not selected in this first stage will not be considered
during the rest of the process, so it is important at this moment to focus more
on the recall than on precision.

In our system we implement an auxiliary predictor M given by

m = M(d)

where m is the list of detected mentions in the given document d. M is
based on a particular set of rules that implement heuristics that have been
proven effective in previous works Santos and Carvalho (2011), and we added
some rules that showed improved recall and accuracy of this task. For a
given document d, this predictor generates a list m of candidate mentions
by including the following items:

1. noun phrases from the provided parse tree, not including nested NPs;

2. pronouns, even when they appear inside larger noun phrases;

3. named entities in the categories Person (PERSON), Organization
(ORG), and Geo-Political Entity (GPE), even when they appear inside
larger NPs;

4. possessive marks, even when they appear inside larger NPs;

5. demonstrative noun phrases, even when they appear inside larger NPs;

6. definite noun phrase, even when they appear inside larger NPs;

7. and noun phrases comprised only by proper nouns, even when they
appear inside larger NPs.

The rules 2, 3, 4, 5, 6 and 7 have the effect of expanding the set of
extracted noun phrases, thereby aligning the set of detected mentions more
fully with the CoNLL-2012 annotated mentions. Our predictor M has the
drawback of not including coreferring mentions of events that are in the
CoNLL-2012 Shared Task data sets.

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Coreference Resolution 23

3.1.1
Mention Head

The concept of a mention is closely related to NPs in syntax. The reason
for this relation is that CR at present focuses on entities and often ignores
event coreference. As a consequence, finding the head of a mention generally
corresponds to identifying the syntactic head of the corresponding noun phrase.
In our system, we use a rule-based approach to solving this problem, similar
to that proposed in Zhekova and Kübler (2013). We include a rule defining the
head to be the last noun/pronoun in a sequence of nouns/pronouns. However,
since we extract heads for mentions rather than for nested phrases, we consider
context to account for the mixed directionality of English NPs, so we stop the
search for the head when finding a preposition.

3.2
Candidate Pairs Graph Generation

Once completed the mentions detection subtask, it is possible to define
the data set as follows:

D = {(x, y)}

where x = (d,m), with d a unlabeled document, m its corresponding mention
set, and y is the correct mentions clustering of d.

To represent a document, we create a graph G(x) with its mentions, as
it is proposed in Fernandes et al. (2014), this graph is called the Candidate
Pairs Graph, and is constructed as follows: For each mention in m, a node is
created in G(x). Thus, an arc in G(x) connects a pair of mentions in x. Ideally,
we would consider the complete graph for each document. However, because
the number of mentions may be large and because most mention pairs are not
coreferent, we filter the arcs by using sieves from the method proposed by Lee
et al. (2013). To further reduce the total number of arcs, we only consider
forward arcs, which means that a directed arc (i, j) from mention i to mention
j is only included in G(x) if i appears before j in the document text. The arc
that passes through any of the used sieves is called a candidate arc. Also, we
refer to the two mentions of a candidate arc as a candidate pair. To complete
G(x), we add an artificial root node and connect it to each mention in x. These
extra arcs are the artificial arcs. Therefore, given a mention pair (i, j), where
i appears before j in the text, we create a directed arc e = (i, j) if at least one
of the following conditions holds:

1. Distance. The number of mentions between i and j is not greater than a
given threshold.

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Coreference Resolution 24

2. Named Entity Alias. i and j has equals named entities, plus:

– Person and GPE. The head word of one mention is part of the other
mention.

– Organization. The head word of one mention is contained in the
other, or one is an acronym of the other.

3. Head Word Match. The head word of i matches the head word of j.

4. Shallow Discourse. This sieve comprises a set of rules proposed by Lee
et al. (2013):

– Singular, first person pronouns with the same speaker.
– Singular, second person pronouns with the same speaker.
– Singular, third person pronoun and a proper name with the same
speaker.

5. Pronouns. j is a pronoun, and i has the same gender, number, and
speaker as j, using the number and gender data from Bergsma and Lin
(2006).

All these sieves are subject to the precondition that one mention is not
embedded in another. We introduced this filter to achieve a better adaptation
to the English portion of the CoNLL-2012 Shared Task data sets.

In Figure 3.2 we shown a possible graph for the Figure 1.1. Note that
because we use a heuristic of sieves to generate the candidate arcs, will occur
two types of problems. First, that a mention is not related to any other of
the cluster to which it belongs, as is the case it7 who is connected neither
the Japanese army2 or the Japanese army6 which are the three mentions that
conform the cluster. Second, there may be a candidate pair that does not
belong to the same cluster, such as, this year 1 is connected with the Japanese
army2, but they are not in the same cluster.

Figure 3.2: Candidate Pairs Graph.

In the first problem, the correct prediction of the cluster is impossible.
However, such cases are rare, given that the recall of the used sieves is

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Coreference Resolution 25

approximately 90%. The second problem is the question to be solved by our
learning algorithm. We use a structured and sparse perceptron that learns
to eliminate from G(x) the candidate arcs between mentions that are not in
the same cluster. More precisely, the perceptron learns to extract a tree of
G(x), which is called document tree Fernandes et al. (2014). Removing the
artificial root node and all its outgoing arcs, we splitting the document tree
into a forest, each tree in this forest is called coreference tree, and its node
set form a mentions cluster. Then we call the union of all mentions clusters
extracted from each coreference tree in the forest as document tree output.
As the proposed task in the CoNLL-2012 Shared Task does not consider the
singleton clusters, we will only form the mentions clusters of coreference trees
with more than one node.

Figure 3.3 shows a possible document tree extracted from Figure 3.2.
Note that of all possible document tree, the document tree output of this is
the most similar to the real clustering of the example. Precisely, this is the
work of our perceptron, to construct a model, that for given a candidate pair
graph G(x) be able to extract from him, the better document tree.

Figure 3.3: Document Tree.

3.3
Basic Feature Setting

To help our predictor identify the most tempting edges to be part of the
document tree, we use basic features to describe a candidate arc. All of them
give hints on the coreference strength of the mention pair connected by the arc.
The features have been adapted from previously proposed features Fernandes
et al. (2014); Ng and Cardie (2002); Sapena et al. (2010); Santos and Carvalho
(2011)

Formally we define the feature vector that describes an arc e = (i, j) who
connect the mentions i and j as:

Φ(x, e) = (φ1(x, e), ..., φm(x, e))

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Coreference Resolution 26

where m is the number of features.
In Figure 3.4 we show how to obtain the features of each candidate pair

(i, j). We consider features relative to mentions i and j, and features about the
relation between mentions. Finally, we concatenate all the features to create
the set of features.

Figure 3.4: Candidate pair features representation.

These features provide lexical, syntactic, semantic, and positional infor-
mation. In Table 3.1, Table 3.2, Table 3.3 and Table 3.4, we describe the 73
basic features used in our system. The Id column identifies each feature. The
Type column indicates the value type of each feature. The # column indicates
how many basic features correspond to each description.

Id Description Type #
L1 Head word of i (j) word 2
L2 String matching of i and j bool 1
L3 String matching of the head words of i and j bool 1
L4 Both i and j are pronouns and their strings

match
ternary 1

L5 Both i and j are not pronouns and their
string match

ternary 1

L6 Previous and next two words of i (j) word 8
L7 Number of tokens in i (j) integer 2
L8 Edit distance of head words of i and j integer 1
L9 Edit distance of i and j after removing de-

terminers
integer 1

L10 i (j) is a definite noun phrase bool 2
L11 i (j) is a demonstrative noun phrase bool 2
L12 The head word of both i and j are proper

nouns
bool 1

L13 Both i and j are proper names and their
strings match

ternary 1

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Coreference Resolution 27

Continuation of Table 3.1
Id Description Type #
L14 Both i and j are proper names and their head

word strings match
ternary 1

L15 i and j are relaxed match bool 1
Total 26

Table 3.1: Lexical Basics Features

Id Description Type #
Sy1 POS tag of the head word of i (j) POS tag 2
Sy2 Previous and next two POS tags of i (j) POS tag 8
Sy3 i (j) is a pronoun bool 2
Sy4 Gender of i (j), if pronoun f,m,n/u 2
Sy5 i and j are both pronouns and agree in

gender
ternary 1

Sy6 i and j are both pronouns and agree in
number

ternary 1

Sy7 i (j) is a proper name bool 2
Sy8 i and j are both proper names bool 1
Sy9 Previous and next predicate of i (j) within

its sentence
verb 4

Sy10 i and j are pronouns and agree in number,
gender, and person

ternary 1

Sy11 Noun phrase embedding level of i (j) in the
syntactic parse

integer 2

Sy12 Number of embedded noun phrases in i (j) integer 2
Sy13 Number of i (j), if pronoun p,s/u 2
Total 30

Table 3.2: Syntactic Basics Features

Id Description Type #
Se1 Baseline system prediction Santos and Car-

valho (2011)
bool 1

Se2 Sense of the head word of i (j) sense 2
Se3 Named entity type of i (j) NE tag 2
Se4 i and j have the same named entity type ternary 1

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Coreference Resolution 28

Continuation of Table 3.3
Id Description Type #
Se5 Previous and next semantic roles for i (j)

within its sentence
SRL tag 4

Se6 Concatenation of semantic roles of i and j for
the same predicate, if they are in the same
sentence

(SRL tag)2 1

Se7 i and j have the same speaker ternary 1
Se8 j is an alias of i Ng and Cardie (2002) bool 1
Total 13

Table 3.3: Semantic Basics Features

Id Description Type #
P1 Distance between i and j in number of sen-

tences
integer 1

P2 Distance between i and j in number of men-
tions

integer 1

P3 Distance between i and j in number of person
names, when i and j are both pronouns or one
of them is a person name

integer 1

P4 One mention is in apposition to the other bool 1
Total 4

Table 3.4: Positional Basics Features

3.4
Context Feature Induction

As a consequence of the fact that we use a learning algorithm based on a
linear model, such as the structured and sparse perceptron, if we use only the
basic features we do not capture enough information to represent coreference
dependencies effectively. Conjoining basic features to derive new features is a
common way to introduce nonlinear contextual patterns into linear models. In
order to generate new nonlinear features, we use the entropy-guided feature
induction (EFI) method Fernandes et al. (2014); Santos and Milidiú (2009);
Santos and Carvalho (2011); Fernandes (2012). EFI automatically derives a
set of basic feature conjunctions, which we denote feature templates. These
templates are later used to generate the derived features, which comprise the

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Coreference Resolution 29

joint feature vectors Φ(x, e) described earlier.

3.4.1
Data set

First we need to modify our data set for a binary classifying task. Using
all arcs in each of the candidate pair graphs, we obtain the arc data set
E = (Ψ(e), c(e)), comprising the arc basic feature vectors Ψ(e) along with
their binary classification c(e), where c(e) = 1 if the candidate pair in e are in
the same cluster, and c(e) = 0 in the other case.

In Table 3.5, we depict an example of such a data set for the document in
Figure 1.1 and the candidate pair graph in Figure 3.2. This example includes
some features mentioned in the previous section Basic Feature Setting.

e Ψ(e)
c(e)

i j L2 Se7 Sy12i L3 P2
1 2 0 1 0 0 0 0
1 4 0 1 0 0 2 1
1 5 0 0 0 0 3 1
2 3 0 0 1 0 0 0
2 6 1 1 1 1 2 1
3 6 0 0 1 0 2 0
4 5 0 0 0 0 0 1
7 8 0 0 0 0 0 0

Table 3.5: Data set for the example in Figure 1.1

The EFI method automatically generates feature templates for a struc-
ture learning problem by conjoining basic features that are highly discrimina-
tive. This method is based on the conditional entropy of arc label c(e) given
the basic features Ψ(e).

3.4.2
Feature Template

For generating the templates, first we train a decision tree(DT) on the
data set E. One of the most used algorithms for DT induction is C4.5 Quinlan
(1992). We use Quinlan’s C4.5 system to obtain the required entropy guided
selected features.In Figure 3.2, we present a decision tree learned from a basic
data set. Each internal node in the DT corresponds to a feature, each leaf
node has a label value (0 or 1, in the binary case), and each edge is labeled
with a value of the source node feature. Additionally, we eliminate template
duplicates.

To extract feature templates, we use a depth-first traversal of the learned
DT and is recursively defined as follows. For each internal node that is visited,

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Coreference Resolution 30

Figure 3.5: Decision Tree for Table 3.5.

a new template is created by conjoining the node feature with its parent
template. Since we aim to generate feature templates as conjunctions of basic
features, we not consider the feature values and the decision variable values in
the DT. Thus, we do not make use of edge labels nor leaf nodes.

Figure 3.6: Features templates.

Figure 3.6 illustrates our method to generate the templates. The tree
on the left side of this picture is the skeleton obtained from the decision
tree in Figure 3.5, in it remains only nodes which are basic features with
high discriminative power. On the right side of the figure are the generated
templates.

This method is able to provide a very large number of templates.
Hence, to limit the maximum template length, we use C4.5 pruned trees and
additionally limit the maximum template length when traversing the DT.

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Coreference Resolution 31

3.4.3
Generated Features

For generate the binaries features, we employ the templates to induce all
binary contextual features that occur in the data set E for the rows where
c(e) = 1. For each template; we create several binary features, each one
corresponding to the assignment of valid values to the template features. For
instance, for the L2 & P2 & Sy12i template in Figure 3.6, and using the data
set shown in Table 3.5, we will generate only three binary attributes, because
there are three rows with c(e) = 1, one of this feature is:

φm(x, e) =

1 if L2 = 0 and P2 = 2 and Sy12i = 0,

0 otherwise.

The derived feature vector Φ(x, e) is a binary vector whose 1-valued
positions indicate the derived features that are active in arc e. These active
derived features depend on the values of the basic features Psi(e). The number
of derived features is enormous because several combinations of basic feature
values arise for each template. However, the number of active derived features
in a specific arc is much smaller. In fact, for each arc, there is one active derived
feature for each template; all others are set to zero.

3.5
Coreference Tree Learning

At this point, we have already presented all the necessary elements to
introduce our learning algorithm. We must find a structure predictor F that
assigns to its document input x = (d,m) a high-quality document tree ŷ given
by:

ŷ = F (x)

We learn F from a training set D of correct input–output pairs. More
specifically, the structured perceptron algorithm learns the weight vector w of
a parameterized predictor given by:

ŷ = F (x;w) = arg maxh∈H(x) s(x, h;w)

where H(x) is the set of feasible outputs for x, that is, all document trees over
the detected mentions m in G(x), and s is a w-parameterized scoring function
over the trees. The prediction ŷ is the solution of an optimization problem
and is called the prediction problem. The objective function of this problem is
given by s, it scores the candidate document trees for the given document.In

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Coreference Resolution 32

McDonald et al. (2005); Fernandes (2012); Fernandes et al. (2014), the argmax
combinatorial problem reduces to a maximum branching problem, which they
solved using efficiently the Chu-Liu-Edmonds algorithm Chu and Liu (1965).

We construct the candidate pair graph G(x) in a way that all edges go
forward, because if exist an edge from i to j, then i has to appear in the
document before j. This property ensures that in G(x) there are no cycles.
Then to solve the maximum branching problem, it is enough to use a greedy
algorithm that selects for each node the most weighted edge that enters the
node. In this way, we greatly simplify our problem. In the figure, we formally
write this algorithm.

Input: G(x) candidate pair graph
Output: y maximum branching tree
y ← Nodes(G(x))
for each node in G(x)

e←MostWeightedEdge(G(x), node)

AddEdge(y, e)

return y

Figure 3.7: Greedy algorithm for maximum branching problem.

Only the weights of each arc are to be defined. Recall that a set of features
Φ(x, e) = (φ1(x, e), ..., φm(x, e)) represents each arc, then using the vector w
we define the the weight of each edges e as:

w(e) =
m∑
i=1

φi(x, e) ∗ w[i]

Summarizing, we train a structured and sparse perceptron to generate a
vector of weights w, which helps to extract a document tree that has the best
document tree output from a candidate pair graph G(x), using the greedy
algorithm in Figure 3.7 for solve the maximum branching problem.

During the rest of the chapter, we will formally explain our learning
algorithm.

3.5.1
Structured Perceptron

In Collins (2002) was presented the structured perceptron. This algorithm
combines the perceptron algorithm for learning linear classifiers with an
inference algorithm and can be described as follows. First define a joint feature
function Φ(x, y) that maps a training sample x and a candidate prediction y
to a vector of length n. Then, its work as follows:

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Coreference Resolution 33

Input: D = {(x, y)} binary data set
Output: w
w ← 0
while no convergence

for each (x, y) ∈ D

ŷ ← arg maxh∈H(x) s(x, h;w)

w ← w + Φ(x, y)− Φ(x, ŷ)

return w

Figure 3.8: Structure Perceptron algorithm.

If we look at Figure 3.8, we can see that we still have to define two
important elements in this algorithm. Firstly we have no defined Φ for a
document tree, but for an edge. Then the next predictor ingredient to be
defined is the feature vector Φ(x, h). This vector is linearly decomposed as:

Φ(x, h) =
∑
e∈h

Φ(x, e)

The second point to note is that in our dataset D = {(x, y)} the outputs y
are mention cluster, whereas our prediction ŷ is a document tree. Then there
is no way to update the weight vector w. Thus, we assume that these tree is
latent, then, we need use the latent structured perceptron algorithm Yu and
Joachims (2009); Sun et al. (2009); Fernandes and Brefeld (2011); Fernandes
et al. (2014) to train our models.

3.5.2
Latent Tree Learning

To modify our algorithm, we predict the constrained document tree
ỹ for the training instance (x, y), using a specialization of the document
tree predictor, the constrained tree predictor Fy(x,w). This predictor finds
a maximum scoring document tree for x that follows the correct clustering y.
Therefore, its search is constrained to a subset Hy(x) contained in H(x). The
constrained tree predictor is given by:

ỹ = Fy(x;w) = arg maxh∈Hy(x) s(x, h;w)

The trees inHy(x) are subgraphs of the constrained candidate pairs graph
Gy(x), which is obtained by removing intercluster arcs regarding the correct
clustering y from the candidate pairs graph G(x). Regarding the artificial arcs,
for each cluster in y, Gy(x) includes only one arc that connects the artificial
node to the first mention of the cluster. Hence, the constrained document tree

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Coreference Resolution 34

can only include arcs between mentions that lie in the same cluster plus one arc
from the artificial root node to each cluster. We use the constrained document
tree ỹ as the ground truth in the current perceptron iteration. In Figure 3.9 we
can appreciate the changes made to the structured perceptron of the Figure 3.8
to turn it into a latent structured perceptron.

Input: D = {(x, y)} binary data set
Output: w
w ← 0
while no convergence

for each (x, y) ∈ D

ỹ ← arg maxh∈Hy(x) s(x, h;w)

ŷ ← arg maxh∈H(x) s(x, h;w)

w ← w + Φ(x, ỹ)− Φ(x, ŷ)

return w

Figure 3.9: Latent Structure Perceptron algorithm.

3.5.3
Large margin and root loss

In this work, we use a large margin generalization of the structure
perceptron Tsochantaridis et al. (2005); Fernandes (2012); Fernandes et al.
(2014) that is based on the well known margin rescaling technique for structural
support vector machines. We embeds a loss function into the prediction
problem. The large margin predictor for a training example (x, y) is given
by:

ŷ = arg maxh∈H(x) s(x, h;w) + C ∗ lr(h, ỹ)

where lr is a non-negative loss function that measures how much a document
tree h differs from the constrained document tree ỹ, which is the ground
truth for the current iteration. The loss function measures the impurity in the
predicted document tree, and C is a loss parameter tuned on the development
set. In our model, we use a loss function proposed in Fernandes et al. (2014)
that counts how many arcs are different in a given tree h compared to the
current iteration ground truth ỹ, that is,

lr(h, ỹ) =
∑

(i,j)/∈h

1[(i, j) ∈ ỹ] ∗ (1 + r ∗ 1[i = 0])

The loss function can be factored along arcs as follow, For each arc
(i, j) ∈ G(x), if (i, j) /∈ ỹ, add C to the cost of the arc, and if in addition
i is the fictitious node, the cost is increased by C ∗ r.

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Coreference Resolution 35

This large margin is only applied during training because its purpose is
to learn a model that separates the ground truth tree from any alternative tree
by a distance proportional to the loss of the alternative tree.

Figure 3.10 shows the modification to the code of our perceptron, to
introduce large margin and root loss.

Input: D = {(x, y)} binary data set
r root loss,
C margin,

Output: w
w ← 0
while no convergence

for each (x, y) ∈ D

ỹ ← arg maxh∈Hy(x) s(x, h;w)

ŷ ← arg maxh∈H(x) s(x, h;w) + C ∗ lr(h, ỹ)

w ← w + Φ(x, ỹ)− Φ(x, ŷ)

return w

Figure 3.10: Latent and Structure Perceptron algorithm with margin and root
loss.

3.5.4
Sparse Perceptron

The binarization of the features and the induction of attributes sig-
nificantly increase the dimension of our features. Many features in high-
dimensional space are usually non-informative or noisy. Those noisy features
will decrease the generalization performance of a perceptron and derogate from
their promising results for dealing with non-linear separable data, especially
when they are many noisy features Liu and Tsang (2016). Here we are con-
cerned with model selection: which features should be used to define the pre-
diction score? We want to take advantage of high-dimensional inputs while
selecting values of w that achieve high accuracy not only on training data,
but also to generalize well on new data. The fact is that models with few
features or sparse models are desirable for several reasons like compactness,
interpretability, good generalization Martins et al. (2011).

Goldberg and Elhadad (2011) have proposed a modification on the
prediction step, inspired in the number of times that a feature participates
in models updates. To achieve this goal we include in our perceptron a vector
u with the number of updates of w in which every feature has participated.
Also, we use a threshold T to establish when a feature became relevant. In
other words, T is the lower bound of the number of updates of w required by
an attribute to participate in the activation rule of the learning algorithm.

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Coreference Resolution 36

Input: D = {(x, y)} binary data set
r root loss,
C margin,
T threshold

Output: w
w ← 0
u← 0
while no convergence

for each (x, y) ∈ D

ỹ ← arg maxh∈Hy(x) s(x, h;w, u, T)

ŷ ← arg maxh∈H(x) s(x, h;w, u, T) + C ∗ lr(h, ỹ)

w ← w + Φ(x, ỹ)− Φ(x, ŷ)

u← u + 1[Φ(x, ỹ) 6= Φ(x, ŷ)]

for all s.t ui < T

ui ← 0

return w

Figure 3.11: Latent, Structure and Sparse Perceptron algorithm with margin
and root loss.

Figure 3.11 exhibits the modifications that were made to the perceptron
to filter the most used attributes during the training. First, the update of
the vector u which also restarted the non-selected features at the end of each
epoch. Second, was necessary to modify the scoring function s to include as
parameters, the vector u, and the threshold T . The main change in this function
occurs in the updating of the weights of each arc in G(x), since we do not
consider now those attributes whose corresponding value in the vector u is less
than T . The new way of updating the weights is exposed below:

w(e) =
m∑
i=1

φi(x, e) ∗ w[i] ∗ 1[u[i] ≥ T]

We also introduce another change to the sparse perceptron, since, we
modify our update rule for u to not always increase the counter, such us if
a feature participates in an update of the current model w. We consider a
probability of dropping out this feature, about a given probability Dropout.
This technique allows better control over the number of selected attributes.
This modification is an adaptation for sparse perceptron of the idea of dropout
of neural networks, proposed by Hinton et al. (2012); Motta (2014). In
Figure 3.12, we present the pseudo-code of the structure perceptron integrating
the dropout extension.

With the introduction of dropout extension, we can make a finest
selection of attributes, through variations of the Dropout. In the original

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Coreference Resolution 37

Input: D = {(x, y)} binary data set
r root loss,
C margin,
T threshold
Dropout

Output: w
w ← 0
u← 0
while no convergence

for each (x, y) ∈ D

ỹ ← arg maxh∈Hy(x) s(x, h;w, u, T)

ŷ ← arg maxh∈H(x) s(x, h;w, u, T) + C ∗ lr(h, ỹ)

w ← w + Φ(x, ỹ)− Φ(x, ŷ)

u← u + 1[Φ(x, ỹ) 6= Φ(x, ŷ) and random[0, 1) < Dropout]

for all s.t ui < T

ui ← 0

return w

Figure 3.12: Latent, Structure and Sparse Perceptron algorithm with margin,
root loss and dropout.

algorithm, we do not get such most excellent selection of attributes because
the threshold of minimum updates is an integer.

3.5.5
Average Perceptron

The last modification we will make to our perceptron concerns the output
of the vector of weights w. If we return the most recent version of the weight
vector w, intuitively, this version is over-adapted to the last few instances,
and may work less well for other instances. For that reason we introduce the
technique of average, that return the average of all versions of the weight
vector w. We use the averaged structured perceptron, based on the suggested
by Collins (2002).

In the classic version of the average perceptron, is stored the sum of all
versions of w, plus a counter t of all instances with which the perceptron is
trained and finally the output of the perceptron is w/t. We introduced the
modification of instead of dividing the sum of all versions of w between the
same value for each feature. We store in a vector t the times when the feature
φk affects w, that is when w[k] changes. Then the final result of w[k] is given
by dividing the sum of all wi[k] by t[k]. As we will show later, this modification
produced better solutions than the classic proposed by Collins (2002) who is
used in our reference paper Fernandes et al. (2014).

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Coreference Resolution 38

In Figure 3.13 we show the final version of our perceptron.

Input: D = {(x, y)} binary data set
r root loss,
C margin,
T threshold
Dropout

Output: w
w ← 0
u← 0
t← 0
s← 0
while no convergence

for each (x, y) ∈ D

ỹ ← arg maxh∈Hy(x) s(x, h;w, u, T)

ŷ ← arg maxh∈H(x) s(x, h;w, u, T) + C ∗ lr(h, ỹ)

w ← w + Φ(x, ỹ)− Φ(x, ŷ)

s← s + w

u← u + 1[Φ(x, ỹ) 6= Φ(x, ŷ) and random[0, 1) < Dropout]

t← t + 1[Φ(x, ỹ) 6= Φ(x, ŷ)]

for all s.t ui < T

ui ← 0

return w ← (si/ti)
k
i=0

Figure 3.13: Average, Latent, Structure and Sparse Perceptron algorithm with
margin, root loss and dropout.

3.6
Chapter Conclusions

In this chapter, we present the whole process to solve the problem of
coreference resolution. Showing the two subtasks in which it is divided: mention
detection and mention clustering. To solve the first, we present a predictor
based on heuristic rules. The second subtask is much more complicated, and
if it requires a machine learning algorithm Throughout the sections in this
chapter, we were constructing our predictor by first modifying the data set
and exposing the necessary structures to explain our structured and sparse
perceptron finally.

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

4
Empirical Evaluation

Coreference resolution is a NLP task that consists of determining which
mentions in a discourse refer to the same entity or event. A mention is a
referring expression that has an entity or event as a referent Sapena et al.
(2013).

The CoNLL 2012 Shared Tasks have created a standard for: task for-
malization, data sets and evaluation metrics. This standarization has served
to set up a common input ground for the parsers and their further evaluation.
In the years following this set up, several machine learning approaches adopt
this standard to evaluate their performances.

In the reported experiments, we use a computer with a four processors of
3.2-GHz and 28 GB RAM. regarding training, the feature induction procedure
takes 4 hours; loading the training data set and generating features from
the learned templates take 10.5 minutes; and the training algorithm takes
9 minutes for epoch. The test procedure on the development set takes 1.3
minutes to load the data set, 5 seconds to load the model, and 10 seconds
to predict the output structures for all documents. Most of these procedures
could be further optimized in terms of both execution time and memory use.

Throughout this chapter, we explain our results in the different stages of
our predictor. Firstly, we will present our final result showing that our predictor
has a competitive performance with the state-of-the-art of the problem. Next,
we expose the performance in the mention detection subtask. Then we will
present results in the creation of the candidate pairs graphs. Finally, we show
the results of our coreferences predictor, crossing each of the modifications
related to it, such as induction of attributes, margin and loss value, and
average.

4.1
CoNLL-2012 Data set

The CoNLL-2012 Shared Task is dedicated to the modeling of unre-
stricted coreference resolution in three languages: Arabic, Chinese, and En-
glish. The OntoNotes project citedoddington2004automatic provide this data
sets. We use only the English portion of this data set. In addition to corefer-
ence information, the shared task data sets contain various annotation layers,
namely, POS, syntactic parses, word senses, NE, and semantic roles (SRL).

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Empirical Evaluation 40

The work consists of the automatic identification of coreferring mentions
of entities and events, given the predicted information on other layers. The
data set for each language comprises three subsets: training, development, and
test. We report our system performances on the development and test sets.
We obtain the development using models that have been trained only on the
training sets. However, we achieve the test results by training on a larger data
set obtained by concatenating the training and development sets.

4.2
Evaluation Metrics

We evaluated the system performance using three evaluation metrics:
MUC Vilain et al. (1995), B3 Bagga and Baldwin (1998), and CEAFe Luo
(2005). Each metric presents different strengths and weaknesses. Also, the
final value is the average of the F1 of each of the metrics, as measured in the
CoNLL-2012 Shared Task. We will briefly explain each of the metrics below.

MUC metrics evaluated the set of system clusters by looking at the
minimum number of pair additions and removals required for them to match
the ground truth clusters Vilain et al. (1995). The pairs to be added represented
false negatives, while the pairs to be removed represented false positives. Let
K represent the ground truth clusters set, and R the system clusters set. Given
clusters k and r from K and R, respectively, MUC recall and precision of R
were:

recall =

∑
k(|k| −m(k,R))∑

k(|k| − 1)

precision =

∑
k(|r| −m(k,K))∑

k(|r| − 1)

where m(r,K) is the number of clusters in K that intersected the cluster r.
B3 metrics evaluated system performance by measuring the overlap

between the clusters predicted by the system and the ground truth clusters
Bagga and Baldwin (1998). Let C be a collection of N documents, d a
document in C, and m a mention in document d. We defined the ground
truth cluster that included m as Gm and the system cluster that contained m
as Sm. Om was the intersection of Gm and Sm. B3 recall and precision were
defined as:

recall =
1

N

∑
d∈C

∑
m∈d

|Om|
|Gm|

precision =
1

N

∑
d∈C

∑
m∈d

|Om|
|Sm|

CEAFe uses a similarity measure φ4 to evaluate the similarity of two

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Empirical Evaluation 41

entities. It uses the Kuhn-Munkres Kuhn (1955); Munkres (1957) algorithm
to find the best one-to-one mapping of the cluster to the response entities (g∗)

using the given similarity measure. Luo (2005). Let gold standard clusters in a
document d be K = {ki : i = 1, 2, ..., |K|}, and system clusters in a document
d be R = {ri : i = 1, 2., |R|}. The chain-based φ4 scores were defined as:

φ4(ki, rj) =
2 ∗ |ki ∩ rj|
|ki|+ |rj|

The CEAFe precision and recall were defined as:

recall =

∑
ki∈K φ4(ki, g

∗(ki))∑
ki∈K φ4(ki, ki)

precision =

∑
ki∈K φ4(ki, g

∗(ki))∑
ri∈R φ4(ri, ri)

For the three metrics the value of F1 is given by the equation.

F1 =
2 ∗ recall ∗ precision
recall + precision

To compare our systems with the rest of the systems participating in the
CoNLL-2012 Shared Task we use the official scorer utilized in the competition.

4.3
State-of-the-Art Systems

System CoNLL
Clark and Manning (2016) 65.73
Wiseman et al. (2016) 64.21
Fernandes et al. (2014) 63.37
This Work 62.24
Martschat et al. (2012) 61.31
Björkelund and Farkas (2012) 61.24
Chang et al. (2012) 60.18

Table 4.1: State-of-the-art systems.

In Table 4.1, we present the CoNLL scores of the best-performing systems
on the coreference resolution problem. The first two rows are very recent
systems that use modern techniques such as deep learning, this is the reason
for the increase in the score of these systems. The third best system is the
one we used as the basis for our work, the result shown is the same that
they competed in the CoNLL-2012 Shared Task Fernandes (2012) because in
Fernandes et al. (2014) they modify the results only for the Chinese language.

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Empirical Evaluation 42

Our system has the fourth best result, and in the CoNLL 2012 competition,
would have obtained the second place for the English language. The last three
rows of this table correspond to the competitors that are ranked the second
Martschat et al. (2012), third Björkelund and Farkas (2012), and fourth Chang
et al. (2012) in the shared task for English.

Table 4.2 shows in detail the results of the best systems in the state-of-
the-art. Note that our system, for the metric B3, has the worst F1 of all the
systems that participated in the competition, but it compensates having much
better F1 than the systems of the last three rows in the others two metrics.

System MUC B3 CEAFe CoNLLR P F1 R P F1 R P F1

Clark and Manning (2016) 79.19 70.44 74.56 69.93 57.99 63.40 63.46 55.52 59.23 65.73
Wiseman et al. (2016) 77.49 69.75 73.42 66.83 56.95 61.50 62.14 53.85 57.70 64.21
Fernandes et al. (2014) 65.83 75.91 70.51 65.79 77.69 71.24 55.00 43.17 48.37 63.37
This Work 65.67 73.15 69.21 64.71 74.58 69.3 53.17 44.09 48.21 62.24
Martschat et al. (2012) 65.21 68.83 66.97 66.50 74.69 70.36 48.64 44.72 46.60 61.31
Björkelund and Farkas (2012) 65.23 70.10 67.58 65.90 75.24 70.26 48.60 43.42 45.87 61.24
Chang et al. (2012) 64.77 68.06 66.38 67.04 71.81 69.34 46.64 43.11 44.81 60.18

Table 4.2: State-of-the-art systems details.

4.4
Mention Detection

The first subtask to solve in our system is the mentions detection. This
task is of vital importance in the final result because those mentions that are
not detected in this first stage will be lost throughout the process. Then it is
important first to ensure the recall meets the precision.

In Table 4.3, we present these performances in the development and
training sets. Indeed a great difference between recall and precision can be
seen. The Total column indicates how many mentions are annotated in the
gold standard data set, which comprises non-singletons only. The Extracted
column indicates the number of mentions detected by our system, and the
Correct column indicates how many of them are correct. The columns R,
P , and F1 correspond, respectively, to the recall, precision, and F1-score of
mentions.

Data set Total Extracted Correct R P F1

development 19 155 44 322 18 021 94.08 40.66 56.78
train 155 141 352 572 146 859 94.66 41.65 57.85

Table 4.3: Mention detection performances before clustering.

As in Fernandes et al. (2014) in our system, we remove singleton mentions
only after the mention clustering step. Hence, for each model, we assess mention

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Empirical Evaluation 43

detection twice: before and after the mention clustering step. In Table 4.4 we
show the results obtained in the mentions detection for the development set,
after clustering them. We only add a column to this table in comparison to
Table 4.3, and it is EFI that represents whether the results are using the
features induction or not.

Total EFI Extracted Correct R P F1

19 155 No 16 927 12 995 67.84 76.77 72.03
Yes 17 205 14 155 73.89 82.27 77.86

Table 4.4: Mention detection performances on development set after clustering.

Note that after the mention clustering step, the mention detection
precision increases because many correctly identified singletons are excluded.
Of course, some non-singleton mentions are wrongly identified as singletons in
the mention clustering step, and there is a consequent drop in recall.

4.5
Candidate Pair Generation

The candidate pair generation step is responsible for creating the candi-
date pairs graph G(x) given the set of detected mentions. Our approach to this
subtask is based on the sieves used in Fernandes et al. (2014), proposed by Lee
et al. (2013). We add to the sieves the precondition that one mention is not
embedded in another. We introduced this filter to achieve a better adaptation
to the English portion of the CoNLL-2012 Shared Task data sets.. The purpose
of using sieves in this step is twofold. First, when generating G(x), we want
to include only the arcs that link mentions that are likely to be coreferent to
avoid dealing with a dense graph in the subsequent steps, which involve arc
feature generation and solving maximum branching problems on G(x). Sec-
ond, we do not want to generate too many precision errors for the subsequent
steps by linking mentions that are not likely to be coreferent. Conversely, the
sieves cannot be too restrictive, or they would miss too many intracluster arcs
and put coreferent mentions in different connected components. If two coref-
erent nodes m1 and m2 belong to different connected components in G(x),
the coreference tree predictor is unable to generate a tree on G(x) containing
the coreferent nodes m1 and m2. Therefore, there is a trade-off between the
restrictiveness of the sieves and the coreference resolution recall.

In this section, we will show the recall of our candidate arcs, evaluated
in the metrics MUC, B3 and CEAFe. For this we create the candidate graphs
G(x) for each document and pass as predictor input the graph Gy(x). In this

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Empirical Evaluation 44

way, we will evaluate the recall of corrects arcs, that is, those that connect
coreferent mentions.

Table 4.5 report the impact of different combinations of sieves on the
MUC, B3 and CEAFe recall of the candidate arcs. These results help us to
understand the contribution of each sieve and the overlap among them. The
first column shows some combinations of sieves. The Arcs column indicates
the number of arcs generated, that is, the sum of the arcs of G(x) for each
document. In the next column, we show the number of correct arcs, which is
the sum of the arcs of each graph Gy(x) for each document. The next three
columns show the recall in each of the metrics when we pass Gy(x) as the input
of our predictor. Finally, the last column shows the average recall of each sieves
combination.

Sieves Arcs Correct Arcs Recall Average
MUC B3 CEAFe

None 4 488 163 95 027 92.67 93.22 94.53 93.47
(1) 317 532 15 484 62.68 53.66 77.78 64.71
(2) 9 937 5 216 10.88 29.37 57.46 32.57
(3) 90 154 34 579 59.64 51.04 74.62 61.77
(4) 31 755 19 744 15.64 31.35 54.85 33.95
(5) 240 544 25 170 27.22 35.48 59.67 40.79
(1) and (3) 396 450 44 283 83.92 81.03 89.2 84.72
(1), (3) and (5) 408 478 50 248 84.27 81.76 89.43 85.15
(1), (3), (5) and (4) 594 876 53 621 84.55 82.13 89.51 85.4
(1), (3), (5), (4) and (2) 595 767 53 895 84.96 82.09 89.66 85.57

Table 4.5: Performances of sieves on the development set.

It is important to note in the Table 4.5 that, by placing all the arcs,
that is, without any sieve, we achieved an average recall of 93.47, which shows
the excellent results of our mentions predictor. Also, using all the sieves, we
managed to reduce the number of arcs to 13.27% of the total, obtaining an
average recall of 91.55% of the average recall using all the arcs.

4.6
Coreference Resolution

To solve the problem of coreference solution, we use a structured percep-
tron, to which we perform a group of modifications that allowed to improve
our results for this task considerably.

In this section, we will show the results of our predictor, exposing the
performance for each of the modifications made to our structured perceptron.

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Empirical Evaluation 45

4.6.1
Margin and Loss Value

The first modification we evaluate is the margin and the loss value. These
parameters allow us to modify the balance between precision and recall.

In Figure 4.1, we show the impact on the CoNLL scorer provided by
the margin and loss value. We report the per-epoch performances of the
current model on the development set during the first 50 epochs. Each epoch
corresponds to iterating over all instances in the training data set. First, we
train our perceptron use neither margin or loss value. Second, we specialize
the perceptron by using only margin with the parameter C = 1, 000. And
finally, we examine the large margin averaged perceptron with the loss value
r = 0.5. The values given to the parameters C and r were calibrated during
the experiments and were used to train our best model. Using the margin, we
observe a consistent improvement in all epochs, and in the final model using
both, margin and loss value, we obtain a significant improvement of more than
1%.

Figure 4.1: Impact of margin and loss value on performance.

Additionally, we see that our method seems to converge before 50 epochs,
which is the number of epochs used to train all models used in this work.

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Empirical Evaluation 46

4.6.2
Average

In our system, we use an average perceptron, because the averaged
algorithm is more robust to noisy examples and usually performs significantly
better than the non-averaged version. But we proposed change in the way we
do the average.

The Figure 4.2 shows the performance in the CoNLL score of the devel-
opment set, without induction of attributes, using the two average strategies
explained in section 3.5 and without average. It can be observed how when
not used average the results are very fluctuating, varies a lot between one
epoch and another. Also, we can appreciate how using the traditional average
strategy the results are stable, generally increasing. Finally using our the av-
erage technique, that we proposed in this work, we were able to improve the
performance of our algorithm by 0.5%.

Figure 4.2: Impact of average on performance.

4.6.3
Feature Induction

Using EFI, we can automatically generate feature templates without
human effort, which allows us to experiment with different template sets easily.
In our experiments, we use all the basic features to produce feature templates
from them. Only 64 basic features appear at least once in the template set. In

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Empirical Evaluation 47

Table 4.6 we present the number of appearances that have the features selected
in the templates.

Feature Appearances
L2 217
Sy12i 128
Se7 92
L1i 79
Sy3j 68
L15 60
L3 51
Se1 43
P4 37
Se3j 32
L11j 32
L6jr1 25
L1j 21
L12 20
Se8 17
Sy4j 16
Sy1j 16
Sy10 15
Sy11j 15
L11i 15
P3 15
Sy7j 13
Sy9ir 13
Sy11i 11
Sy9jr 10
L8 9
L7j 8
Se4 8
L10i 7
L6jl2 7
L6il2 7
L5 6
Se2j 6
L10j 6
Sy9jl 6
L6il1 5

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Empirical Evaluation 48

Continuation of Table 4.6
Feature Appearances
Sy4i 5
Sy6 5
Se6 5
L6ir1 5
L4 5
Sy2jl1 4
Sy12j 4
Se5jr 4
Sy5 4
Se5jl 4
Sy2jr1 4
Se3i 4
Sy1i 3
L6ir2 3
L6jr2 3
Sy2jr2 3
Sy2jl2 3
Se2i 3
L7i 3
Sy2ir1 3
Sy13i 3
Sy7i 3
L6jl1 3
Sy13j 2
Sy9il 2
Se5il 2
Sy2il1 2
Se5ir 2

Table 4.6: Appearances of the features in the templates.

In our final system, we use a set of 252 templates obtained by merging
the output of two independent EFI executions. These two runs are based on
two different training data sets. In the first we use only the mention pairs
produced by sieves 1 and 3; and in the second the mention pairs produced by
all sieves. In order not to generate too many templates we limit the height of
the decision tree to 5 and create the templates in sizes from 2 to 5.

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Empirical Evaluation 49

In Table 4.7 we report the performance of our system evaluated in the
development set. In the first row, the results are observed using only the 73
basic features. While for the results shown in the second row we also use the
features generated by the 252 templates. The results are impressively better
since the value of F1 for each metric increases by more than 5%, with the
metric MUC being the one with the highest increase of 9.39% more. The final
result grew by 7.25%.

EFI MUC B3 CEAFe CoNLLR P F1 R P F1 R P F1

No 55.63 62.86 59.02 59.47 69.57 64.12 46.12 38.49 41.96 55.03
Yes 64.81 72.43 68.41 65.59 75.01 69.99 53.34 44.36 48.44 62.28

Table 4.7: Impact of EFI in development performance.

4.6.4
Sparse Perceptron

Due to the induction of attributes in our system, the number of features
grows considerably in the order of millions. Then it is necessary to reduce the
size of the model. For this, we introduce regularization techniques based on
sparse linear models. Our primary goal is to promote more compact models,
which are desirable because they facilitate interpretation, they take less time
to be trained and occupy less computational resources.

Table 4.8 presents the performance on the CoNLL score obtained in
the development set after 15 training epoch, using induction of attributes.
This table presents the impact of the threshold and dropout parameters on
the number of attributes of the generated model, and also shows a slight
improvement in performance. The columns Threshold and Dropout show the
values of the parameters used. The #Features column exposes the number of
attributes to use in the resulting model.

Threshold Dropout # Features CoNLL
0 1 4 463 179 61.74
5 1 458 624 61.72
5 0.9 431 552 61.74
5 0.8 403 013 61.71
5 0.6 333 138 61.74
5 0.4 244 719 61.6

Table 4.8: Impact of threshold and dropout in the model length and develop-
ment performance.

It is important to note how the number of attributes in the models
decreases when we enter threshold and dropout to our perceptron, all without

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Empirical Evaluation 50

reducing the performance, as in cases with dropout 0.9 and 0.6, on the contrary
when we increase the number of epochs in training the performance of our
system improves.

In the scenario of feature induction the amount of binary attributes that
are generated by the templates can lead to a potential overfitting of the training
data. Also, it might introduce a large number of irrelevant attributes as was
shown in Motta (2014).

Figure 4.3: Impact of dropout and threshold on training performance.

Figure 4.3 and Figure 4.4 confirm the previous proposition of Motta
(2014), as, Figure 4.3 shows how the performance during training was reduced
when we introduce the sparse perceptron technique. Although Figure 4.4
exposes how performance increases in the development set.

Figure 4.4: Impact of dropout and threshold on development performance.

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Empirical Evaluation 51

4.7
Error Analysis

In this section, we provide statistics regarding the most common errors
within the candidate pairs generation and the outputs of our structure predic-
tor for the development set. Three steps in our predictor are direct sources of
errors: mention detection, candidate pair generation, and mention clustering.
The errors in each step propagate to the next steps.

During the detection of mentions, we focus more on the recall than on
precision. One of the errors during this stage is the non-detection of the
singleton mentions since we detect this type of mentions only during the
prediction. Also, our system does not handle coreferring mentions of events,
and it thus does not consider verbs when creating candidate mentions, which
is responsible for many recall errors in this step.

In the candidate pairs generation stage, we use sieves to choose the edges
that are part ofG(x). This method can select many incorrect edges to be part of
the candidate pair graph, as well as leave out arcs between corefents mentions.
The three first columns in Table 4.9, shows the head POS tags combinations,
of edges (i, j) incorrectly added to G(x) that occur most frequently during the
creation of pairs graph candidates in development set. The remaining columns
show the head POS tag combinations of the (i, j) edges that join coreferents
mentions, but were not added to the candidate pairs graph. The POS tags that
appear in the table are: NNP and NR stand for singular proper noun, NN for
singular noun, NNS for plural noun, NT for temporal noun, PRP for pronoun,
and PRP$ for possessive pronoun.

Wrong Selected Not Selected
i j % i j %

PRP PRP 19.11 PRP PRP 22.55
NN PRP 15.99 NNP PRP 11.92
NN NN 9.1 PRP NNP 11.58
NNS PRP 6.42 PRP$ PRP 9.86
NNP NNP 5.36 PRP PRP$ 8.88
NNP NN 4.84 NNP PRP$ 4.31
NN NNP 4.13 PRP$ NNP 3.88
NNP PRP 4.13 NN PRP 3.48
PRP NN 3.77 NNP NNP 3
NNS NN 3.33 PRP NN 2.87

Others 23.82 Others 17.67

Table 4.9: Candidate pairs generation errors.

Note, that the major problems in both cases are obtained when the head
of two mentions are pronouns, which makes to suspect that the significant part

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Empirical Evaluation 52

of the errors in this stage come from the sieve (5). That, added to the fact that
this sieve scores a huge number of arches without obtaining a significant recall,
in comparison with the rest of the sieves, indicates that for future work this
sieve must be revised.

To measure error during training, we compare each predicted document
tree ŷ with the corresponding constrained document tree ỹ. For each incorrectly
predicted parent i for a mention j, that is i and j are not in the same cluster,
let î, be its corresponding correct arc in ỹ. For all documents in the training
set, we compute the frequency of the head POS tags of mentions j, i, and î, or
Root, in case that i or î was the root node. Note that a constrained document
tree is computed on the graph generated in the candidate pair generation step,
which already includes recall errors. Thus, the frequencies reported here are
computed over the remaining errors. In Table 4.10, we present the top ten
errors, after one training epoch, where, again, the greatest number of mistakes
occurs between mentions with pronoun head POS.

i î j %
PRP PRP PRP 12,39
Root NNP NNP 9,58
NNP Root NNP 9,02
Root NN NN 6,63
NN Root NN 6,48
PRP Root PRP 5,78
Root PRP PRP 5,66
NNP NNP NNP 4,88
NNS Root NNS 3,02
Root NNS NNS 1,92
Others 35.18

Table 4.10: Most frequent errors whenever an incorrect parent i for a mention
j is predicted instead of the correct parent î.

Finally, we present the error analysis during the prediction stage. A highly
probable error of our predictor is to connect a singleton mention to a document
tree. In Table 4.11, we present the most frequent head POS tags for these
singleton errors, surprisingly, most errors are nouns.

i %
NN 47,44
NNS 20,97
NNP 19,59
PRP 7,84
Others 4.16

Table 4.11: Most frequent singleton errors.

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Empirical Evaluation 53

4.8
Chapter Conclusions

Here we reported the empirical evaluation performed to the proposed
solution. We have observed our competitive results when compared against
state-of-art approaches. We also provide detailed experimental results that
highlight the contribution of individual parts of our system, providing impor-
tant insights to researchers interested in coreference resolution. Finally, we
did an analysis of the most common errors that affect the performance of our
system.

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

5
Conclusion

Several techniques have been proposed to automatically solve the coref-
erence resolution problem. The CoNLL 2011 and 2012 Shared Tasks, marked
an important point in the advances to address the issue of coreference resolu-
tion, because, in addition to providing an excellent annotated data set, they
establish a standard for evaluating and comparing parsers. In this dissertation,
we examine the most relevant works on this topic, showing the different types
of approaches to the problem, among which the most used are mention-pair
classification, entity-mention, correlation clustering and more recently, deep
learning has been used to address the problem.

Following a line of research of Laboratorio de Engenharia de Algoritmos
e Redes Neurais (LEARN), we base our work on the paper Fernandes et al.
(2014), that is based on two modeling techniques: latent coreference trees and
entropy-guided feature induction. We represent a document using a graph, in
which the nodes are the mentions detected in the document. The arcs of this
graph link mention pairs that are coreferent candidates. Our learning algorithm
learns to extract from each graph a tree that provides the best clustering.

In this dissertation, we use the structured perceptron as our learning
algorithm, because this algorithm is one of the most popular linear discriminant
methods due to its flexibility, robustness, and simplicity. It is also adapted
to learn complex representations, such as those required for tree prediction,
as in our case. We make modifications like the introduction of dropout and
sparse vector, to reduce the number of parameters of our algorithm. We modify
the classic average technique used in Fernandes et al. (2014), improving the
performance of our algorithm by 0.5%. Also we include an induction method,
which automatically provides features that represent nonlinear patterns.

With the inclusion of the techniques of dropout and sparse perceptron,
we managed to reduce the number of attributes of the model in 92,54%, which
reduced the overfitting in our algorithm, since, it decreases the performance
on the training set but increases it on the development set. Also, our solution
significantly reduces the time to obtain the clusters of a document, since, for
the prediction, our system takes 0.35 seconds per document, while in state-of-
the-art Clark and Manning (2016), it takes 5 seconds for each one.

Our coreference resolution system for the English language system ob-
tained a performance of 62.24 on the CoNLL score in the test set. As far as we

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Conclusion 55

know, this result is the fourth best result found in the state-of-the-art systems,
and in the CoNLL 2012 Shared Task would have obtained the second place for
the English language.

Future Work

Our error analysis shows that most of the errors during the candidate
pairs graph generation and training, come from edges erroneously created
between pronouns. In a future work, it is necessary to work on the pronouns
resolution.

In our system the set of attributes in their vast majority are extracted
from Fernandes et al. (2014), so they are general attributes that can be used
in any language. For more specification in the English language, it is necessary
to embed more specific attributes, such as those using Wordnet Miller (1995)
proposed in Santos and Carvalho (2011).

One limitation of the proposed modeling approach is the arc-based fea-
tures. Such local information is clearly not sufficient to model all dependencies
involved in coreference resolution. Then, considering more sophisticated con-
textual features is necessary. Hence, in future work, we plan to include higher-
order features. Higher-order tree-based features have been successfully applied
to dependency parsers McDonald and Pereira (2006); Koo et al. (2010) and
can be used to extend our coreference system.

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

6
Bibliography

BAGGA, A.; BALDWIN, B. Algorithms for scoring coreference chains. In The
first international conference on language resources and evaluation
workshop on linguistics coreference. [S.l.: s.n.], 1998. vol. 1, p. 563–
566. 1.1, 4.2

BANSAL, M.; KLEIN, D. Coreference semantics from web features. In AS-
SOCIATION FOR COMPUTATIONAL LINGUISTICS. Proceedings of the
50th Annual Meeting of the Association for Computational Linguis-
tics: Long Papers-Volume 1. [S.l.], 2012. p. 389–398. 2.1

BENGTSON, E.; ROTH, D. Understanding the value of features for coref-
erence resolution. In ASSOCIATION FOR COMPUTATIONAL LINGUIS-
TICS. Proceedings of the Conference on Empirical Methods in Natu-
ral Language Processing. [S.l.], 2008. p. 294–303. 2.1, 2.2

BERGSMA, S.; LIN, D. Bootstrapping path-based pronoun resolution. In AS-
SOCIATION FOR COMPUTATIONAL LINGUISTICS. Proceedings of the
21st International Conference on Computational Linguistics and the
44th annual meeting of the Association for Computational Linguis-
tics. [S.l.], 2006. p. 33–40. 5

BJÖRKELUND, A.; FARKAS, R. Data-driven multilingual coreference reso-
lution using resolver stacking. In ASSOCIATION FOR COMPUTATIONAL
LINGUISTICS. Joint Conference on EMNLP and CoNLL-Shared Task.
[S.l.], 2012. p. 49–55. 4.3, 4.3

CAI, J.; MÚJDRICZA-MAYDT, E.; STRUBE, M. Unrestricted coreference
resolution via global hypergraph partitioning. In ASSOCIATION FOR
COMPUTATIONAL LINGUISTICS. Proceedings of the Fifteenth Con-
ference on Computational Natural Language Learning: Shared Task.
[S.l.], 2011. p. 56–60. 2.7

CAI, J.; STRUBE, M. End-to-end coreference resolution via hypergraph
partitioning. In ASSOCIATION FOR COMPUTATIONAL LINGUISTICS.
Proceedings of the 23rd International Conference on Computational
Linguistics. [S.l.], 2010. p. 143–151. 2.7

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Bibliography 57

CHANG, K.-W. et al. Inference protocols for coreference resolution. In AS-
SOCIATION FOR COMPUTATIONAL LINGUISTICS. Proceedings of the
Fifteenth Conference on Computational Natural Language Learning:
Shared Task. [S.l.], 2011. p. 40–44. 2.1

CHANG, K.-W. et al. Illinois-coref: The ui system in the conll-2012 shared
task. In ASSOCIATION FOR COMPUTATIONAL LINGUISTICS. Joint
Conference on EMNLP and CoNLL-Shared Task. [S.l.], 2012. p. 113–
117. 4.3, 4.3

CHU, Y.-J.; LIU, T.-H. On shortest arborescence of a directed graph. Sci-
entia Sinica, SCIENCE PRESS 16 DONGHUANGCHENGGEN NORTH
ST, BEIJING 100717, PEOPLES R CHINA, vol. 14, no. 10, p. 1396, 1965.
2.5, 3.5

CLARK, K.; MANNING, C. D. Deep reinforcement learning for mention-
ranking coreference models. arXiv preprint arXiv:1609.08667, 2016.
1.3, 4.3, 4.3, 5

CLARK, K.; MANNING, C. D. Improving coreference resolution by learning
entity-level distributed representations. arXiv preprint arXiv:1606.01323,
2016. 2.6

COLLINS, M. Discriminative training methods for hidden markov models:
Theory and experiments with perceptron algorithms. In ASSOCIATION
FOR COMPUTATIONAL LINGUISTICS. Proceedings of the ACL-02
conference on Empirical methods in natural language processing-
Volume 10. [S.l.], 2002. p. 1–8. 2.4, 3.5.1, 3.5.5

DENIS, P.; BALDRIDGE, J. et al. Joint determination of anaphoricity and
coreference resolution using integer programming. In CITESEER. HLT-
NAACL. [S.l.], 2007. p. 236–243. 2.7

EDMONDS, J. Optimum branchings. Journal of Research of the national
Bureau of Standards B, vol. 71, no. 4, p. 233–240, 1967. 2.5

FERNANDES, E. L. R. Entropy guided feature generation for structure
learning. Tese (Doutorado) — PUC-Rio, 2012. 4, 3, 1.3, 3.4, 3.5, 3.5.3,
4.3

FERNANDES, E. R.; BREFELD, U. Learning from partially annotated se-
quences. In SPRINGER. Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. [S.l.], 2011. p. 407–
422. 3.5.1

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Bibliography 58

FERNANDES, E. R.; SANTOS, C. N. dos; MILIDIÚ, R. L. Latent trees for
coreference resolution. Computational Linguistics, MIT Press, 2014. 1,
1.1, 1.1, 1.2, 2, 1.3, 2, 2.5, 3, 3.2, 3.2, 3.3, 3.4, 3.5, 3.5.1, 3.5.3, 3.5.5,
4.3, 4.3, 4.4, 4.5, 5

FINKEL, J. R.; MANNING, C. D. Enforcing transitivity in coreference resolu-
tion. In ASSOCIATION FOR COMPUTATIONAL LINGUISTICS. Proceed-
ings of the 46th Annual Meeting of the Association for Computa-
tional Linguistics on Human Language Technologies: Short Papers.
[S.l.], 2008. p. 45–48. 2.7

FINLEY, T.; JOACHIMS, T. Supervised clustering with support vector ma-
chines. In ACM. Proceedings of the 22nd international conference on
Machine learning. [S.l.], 2005. p. 217–224. 2.4

GOLDBERG, Y.; ELHADAD, M. Learning sparser perceptron models.
[S.l.], 2011. 4, 3.5.4

GRISHMAN, R.; SUNDHEIM, B. Message understanding conference-6: A
brief history. In Coling. [S.l.: s.n.], 1996. vol. 96, p. 466–471. 1.1

HAGHIGHI, A.; KLEIN, D. Coreference resolution in a modular, entity-
centered model. In ASSOCIATION FOR COMPUTATIONAL LINGUIS-
TICS. Human Language Technologies: The 2010 Annual Conference
of the North American Chapter of the Association for Computational
Linguistics. [S.l.], 2010. p. 385–393. 2.1

HARABAGIU, S. M.; BUNESCU, R. C.; MAIORANO, S. J. Text and knowl-
edge mining for coreference resolution. In ASSOCIATION FOR COMPU-
TATIONAL LINGUISTICS. Proceedings of the second meeting of the
North American Chapter of the Association for Computational Lin-
guistics on Language technologies. [S.l.], 2001. p. 1–8. 2.2

HINTON, G. E. et al. Improving neural networks by preventing co-adaptation
of feature detectors. arXiv preprint arXiv:1207.0580, 2012. 3.5.4

KIM, J.-D. et al. Genia corpus—a semantically annotated corpus for bio-
textmining. Bioinformatics, Oxford Univ Press, vol. 19, no. suppl 1, p.
i180–i182, 2003. 2.3

KLENNER, M. Enforcing consistency on coreference sets. In Recent Ad-
vances in Natural Language Processing (RANLP). [S.l.: s.n.], 2007. p.
323–328. 2.7

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Bibliography 59

KOO, T. et al. Dual decomposition for parsing with non-projective head au-
tomata. In ASSOCIATION FOR COMPUTATIONAL LINGUISTICS. Pro-
ceedings of the 2010 Conference on Empirical Methods in Natural
Language Processing. [S.l.], 2010. p. 1288–1298. 5

KRUSKAL, J. B. On the shortest spanning subtree of a graph and the trav-
eling salesman problem. Proceedings of the American Mathematical
society, JSTOR, vol. 7, no. 1, p. 48–50, 1956. 2.5

KUHN, H. W. The hungarian method for the assignment problem. Naval
research logistics quarterly, Wiley Online Library, vol. 2, no. 1-2, p. 83–
97, 1955. 4.2

LEE, H. et al. Deterministic coreference resolution based on entity-centric,
precision-ranked rules. Computational Linguistics, MIT Press, vol. 39,
no. 4, p. 885–916, 2013. 2, 2.1, 3, 3.2, 4, 4.5

LIU, W.; TSANG, I. W. Sparse perceptron decision tree for millions of
dimensions. In AAAI. [S.l.: s.n.], 2016. p. 1881–1887. 3.5.4

LUO, X. On coreference resolution performance metrics. In ASSOCIATION
FOR COMPUTATIONAL LINGUISTICS. Proceedings of the conference
on Human Language Technology and Empirical Methods in Natural
Language Processing. [S.l.], 2005. p. 25–32. 1.1, 4.2

LUO, X. et al. A mention-synchronous coreference resolution algorithm
based on the bell tree. In ASSOCIATION FOR COMPUTATIONAL LIN-
GUISTICS. Proceedings of the 42nd Annual Meeting on Association
for Computational Linguistics. [S.l.], 2004. p. 135. 2.3

MARTINS, A. F. et al. Structured sparsity in structured prediction. In AS-
SOCIATION FOR COMPUTATIONAL LINGUISTICS. Proceedings of the
Conference on Empirical Methods in Natural Language Processing.
[S.l.], 2011. p. 1500–1511. 3.5.4

MARTSCHAT, S. et al. A multigraph model for coreference resolution. In AS-
SOCIATION FOR COMPUTATIONAL LINGUISTICS. Joint Conference
on EMNLP and CoNLL-Shared Task. [S.l.], 2012. p. 100–106. 4.3, 4.3

MCCALLUM, A.; WELLNER, B. Conditional models of identity uncertainty
with application to noun coreference. In NIPS. [S.l.: s.n.], 2004. p. 905–
912. 2.4

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Bibliography 60

MCCARTHY, J. F.; LEHNERT, W. G. Using decision trees for coreference
resolution. arXiv preprint cmp-lg/9505043, 1995. 2.2

MCDONALD, R.; CRAMMER, K.; PEREIRA, F. Online large-margin training
of dependency parsers. In ASSOCIATION FOR COMPUTATIONAL LIN-
GUISTICS. Proceedings of the 43rd annual meeting on association
for computational linguistics. [S.l.], 2005. p. 91–98. 3.5

MCDONALD, R. T.; PEREIRA, F. C. Online learning of approximate depen-
dency parsing algorithms. In EACL. [S.l.: s.n.], 2006. p. 81–88. 5

MILIDIÚ, R. L. et al. Phrase chunking using entropy guided transformation
learning. In ACL. [S.l.: s.n.], 2008. p. 647–655. 4, 3

MILLER, G. A. Wordnet: a lexical database for english. Communications
of the ACM, ACM, vol. 38, no. 11, p. 39–41, 1995. 2.2, 5

MOTTA, E. N. Induçao e Seleçao Incrementais de Atributos no Apren-
dizado Supervisionado. Tese (Doutorado) — PUC-Rio, 2014. 3.5.4,
4.6.4, 4.6.4

MUNKRES, J. Algorithms for the assignment and transportation problems.
Journal of the society for industrial and applied mathematics, SIAM,
vol. 5, no. 1, p. 32–38, 1957. 4.2

NG, V. Shallow semantics for coreference resolution. In IJcAI. [S.l.: s.n.],
2007. vol. 2007, p. 1689–1694. 2.2

NG, V.; CARDIE, C. Combining sample selection and error-driven pruning
for machine learning of coreference rules. In ASSOCIATION FOR COM-
PUTATIONAL LINGUISTICS. Proceedings of the ACL-02 conference
on Empirical methods in natural language processing-Volume 10.
[S.l.], 2002. p. 55–62. 2.2

NG, V.; CARDIE, C. Improving machine learning approaches to corefer-
ence resolution. In ASSOCIATION FOR COMPUTATIONAL LINGUIS-
TICS. Proceedings of the 40th annual meeting on association for
computational linguistics. [S.l.], 2002. p. 104–111. 2.2, 3.3, 3.3

PRADHAN, S. et al. Conll-2012 shared task: Modeling multilingual un-
restricted coreference in ontonotes. In ASSOCIATION FOR COMPU-
TATIONAL LINGUISTICS. Joint Conference on EMNLP and CoNLL-
Shared Task. [S.l.], 2012. p. 1–40. 1.1, 1.1, 5, 1.3

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Bibliography 61

PRADHAN, S. et al. Conll-2011 shared task: Modeling unrestricted corefer-
ence in ontonotes. In ASSOCIATION FOR COMPUTATIONAL LINGUIS-
TICS. Proceedings of the Fifteenth Conference on Computational
Natural Language Learning: Shared Task. [S.l.], 2011. p. 1–27. 1.1

QUINLAN, J. R. C45. [S.l.]: Morgan Kaufmann, 1992. 3.4.2

RECASENS, M. et al. Semeval-2010 task 1: Coreference resolution in multi-
ple languages. In ASSOCIATION FOR COMPUTATIONAL LINGUISTICS.
Proceedings of the 5th International Workshop on Semantic Evalua-
tion. [S.l.], 2010. p. 1–8. 1.1

SANTOS, C. N. dos; CARVALHO, D. L. Rule and tree ensembles for un-
restricted coreference resolution. In ASSOCIATION FOR COMPUTA-
TIONAL LINGUISTICS. Proceedings of the Fifteenth Conference on
Computational Natural Language Learning: Shared Task. [S.l.], 2011.
p. 51–55. 1, 3, 1, 2.1, 3.1, 3.3, 3.3, 3.4, 5

SANTOS, C. N. dos; MILIDIÚ, R. L. Entropy guided transformation learn-
ing. In Foundations of Computational, Intelligence Volume 1. [S.l.]:
Springer, 2009. p. 159–184. 3, 3.4

SAPENA, E.; PADRÓ, L.; TURMO, J. Relaxcor: A global relaxation label-
ing approach to coreference resolution. In ASSOCIATION FOR COMPU-
TATIONAL LINGUISTICS. Proceedings of the 5th International Work-
shop on Semantic Evaluation. [S.l.], 2010. p. 88–91. 3.3

SAPENA, E.; PADRÓ, L.; TURMO, J. A constraint-based hypergraph parti-
tioning approach to coreference resolution. Computational Linguistics,
MIT Press, vol. 39, no. 4, p. 847–884, 2013. 2.1, 2.7, 4

SOON, W. M.; NG, H. T.; LIM, D. C. Y. A machine learning approach to
coreference resolution of noun phrases. Computational linguistics, MIT
Press, vol. 27, no. 4, p. 521–544, 2001. 2.1, 2.2

STOYANOV, V. et al. Coreference resolution with reconcile. In ASSOCIA-
TION FOR COMPUTATIONAL LINGUISTICS. Proceedings of the ACL
2010 Conference Short Papers. [S.l.], 2010. p. 156–161. 2.1

SUN, X. et al. Latent variable perceptron algorithm for structured classifica-
tion. In IJCAI. [S.l.: s.n.], 2009. vol. 9, p. 1236–1242. 3.5.1

TSOCHANTARIDIS, I. et al. Large margin methods for structured and in-
terdependent output variables. Journal of machine learning research,
vol. 6, no. Sep, p. 1453–1484, 2005. 3.5.3

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

Bibliography 62

URYUPINA, O. Linguistically motivated sample selection for coreference
resolution. In Proceedings of DAARC. [S.l.: s.n.], 2004. vol. 2004. 2.2

VILAIN, M. et al. A model-theoretic coreference scoring scheme. In AS-
SOCIATION FOR COMPUTATIONAL LINGUISTICS. Proceedings of the
6th conference on Message understanding. [S.l.], 1995. p. 45–52. 1.1,
4.2

WISEMAN, S.; RUSH, A. M.; SHIEBER, S. M. Learning global features for
coreference resolution. arXiv preprint arXiv:1604.03035, 2016. 4.3, 4.3

WISEMAN, S. J. et al. Learning anaphoricity and antecedent ranking fea-
tures for coreference resolution. In ASSOCIATION FOR COMPUTA-
TIONAL LINGUISTICS. [S.l.], 2015. 2.6

YANG, X. et al. An entity-mention model for coreference resolution with
inductive logic programming. In ACL. [S.l.: s.n.], 2008. p. 843–851. 2.3

YANG, X. et al. Coreference resolution using competition learning ap-
proach. In ASSOCIATION FOR COMPUTATIONAL LINGUISTICS. Pro-
ceedings of the 41st Annual Meeting on Association for Computa-
tional Linguistics-Volume 1. [S.l.], 2003. p. 176–183. 2.2

YANGY, X. et al. An np-cluster based approach to coreference resolution.
In ASSOCIATION FOR COMPUTATIONAL LINGUISTICS. Proceedings
of the 20th international conference on Computational Linguistics.
[S.l.], 2004. p. 226. 2.3

YU, C.-N. J.; JOACHIMS, T. Learning structural svms with latent variables.
In ACM. Proceedings of the 26th annual international conference on
machine learning. [S.l.], 2009. p. 1169–1176. 2.4, 2.5, 3.5.1

YUAN, B. et al. A mixed deterministic model for coreference resolution.
In ASSOCIATION FOR COMPUTATIONAL LINGUISTICS. Joint Confer-
ence on EMNLP and CoNLL-Shared Task. [S.l.], 2012. p. 76–82. 2.1

ZHEKOVA, D.; KÜBLER, S. Machine learning for mention head detection in
multilingual coreference resolution. In RANLP. [S.l.: s.n.], 2013. p. 747–
754. 3.1.1

DBD
PUC-Rio - Certificação Digital Nº 1513095/CA

	Table of contents
	Introduction
	Coreference Resolution
	Motivations and Goals
	Contributions
	Dissertation Organization

	Related Works
	Mention Detection
	Mention-Pair Classification
	Entity-Mention
	Correlation Clustering
	Coreference Tree
	Deep Learning
	Other systems
	Chapter Conclusions

	Coreference Resolution
	Mention Detection
	Candidate Pairs Graph Generation
	Basic Feature Setting
	Context Feature Induction
	Coreference Tree Learning
	Chapter Conclusions

	Empirical Evaluation
	CoNLL-2012 Data set
	Evaluation Metrics
	State-of-the-Art Systems
	Mention Detection
	Candidate Pair Generation
	Coreference Resolution
	Error Analysis
	Chapter Conclusions

	Conclusion
	Bibliography

